SelectScience Logo
4.9/5 3 reviews
Journal citations counter
0020

HypoxyLab™ Bench-top physiological oxygen incubator and workstation

Authentic physoxia in a bench-top hypoxia incubator/workstation.

  • Compact and portable
  • Regulated using oxygen partial pressure for true hypoxia/physoxia
  • Mimics the in vivo cellular oxygen environment
  • Rapid equilibration / frugal gas consumption
  • HEPA filtration built-in
  • Brilliantly ergonomic design
  • Convenient 'easy-entry' sample transfer system
  • Intuitive touch-screen operation
  • Supports OxyLite™ for in situ dissolved oxygen measurements
  • 5-year manufacturer's warranty*
Enquire

Overview

In the field of tissue culture, there is a rapidly growing appreciation that a physiological cellular oxygen environment is essential for the analysis of cellular processes with respect to function and metabolism.

Rising to this challenge, Oxford Optronix has developed the HypoxyLab™ - a fully-featured, ergonomically engineered and easy to use normoxia/hypoxia workstation that provides a HEPA-filtered environment in which oxygen, carbon dioxide, temperature and humidity can be precisely controlled.

In short, HypoxyLab™ is a compact hypoxia workstation and incubator for everyday use, suitable for applications including,

  • Cancer, radiation and apoptosis cell biology
  • Stem cell research
  • Neurosciences research
  • Human virology research
  • Multidisciplinary drug development and proteomics

* 5-year manufacturer's warranty is conditional upon annual preventative maintenance servicing

Key Benefits

True physiological oxygen (Physoxia)

As every scientist knows, it’s the partial pressure of oxygen that reflects the oxygen that cells actually ‘see’. The partial pressure of oxygen varies not only with oxygen concentration in the atmosphere, but also with altitude and prevailing weather conditions. For this reason we believe it is insufficient to express hypoxia in terms of a barometrically uncompensated percent oxygen concentration alone. HypoxyLab is therefore the world’s first and only hypoxia workstation that directly regulates its environment using the partial pressure of oxygen, expressed in absolute units of mmHg or kPa, making it insensitive to changing climatic conditions or the altitude of the laboratory. This scientifically rigorous approach provides researchers the ability to replicate physiological oxygen in vitro, at the highest levels of accuracy and reproducibility.

See our related article, "The Reproducibility Issue within Hypoxia Chambers and a Simple Solution to Fix it"

Rapid, efficient, accurate

HypoxyLab creates a fully humidified, stable hypoxia environment less than 20 minutes from switch-on and can deliver stable, near-anoxia conditions in under an hour, all while consuming surprisingly little nitrogen gas. Environmental conditions are delivered using digital gas flow controllers and state-of-the-art sensors for unrivalled performance with an oxygen accuracy of up to +/- 1 mmHg.

In situ dissolved oxygen from media and cultures

HypoxyLab supports the measurement of dissolved oxygen directly from media or cell cultures using any of our OxyLite™ oxygen monitors and a dedicated, sealable side-gland via which an OxyLite oxygen sensor can be fed into the chamber. Considered the ‘gold standard’ for biological applications, the OxyLite sensor is a tiny, highly accurate oxygen sensor that does not itself consume oxygen and that can be positioned anywhere within media or cell cultures to obtain continuous dissolved oxygen measurements. This provides a measure of oxygen availability in the microenvironment where cells are actually growing. Oxygen readings (in mmHg) can be read from the OxyLite display or can even be displayed and recorded by the HypoxyLab itself.

OxyLite and OxyLite sensor
Optional OxyLite monitor and sensors permit in situ dissolved oxygen measurements from media and cell cultures

Easy-entry system

HypoxyLab’s smart letterbox entry system affords quick and easy transfer of cell plates and accessories into or out of the chamber without the need for an air lock or isolation hatch. HypoxyLab automatically senses when items are passed through the hatch, and temporarily generates a slight over-pressure to prevent ingress of external atmosphere. This immediate response ensures that oxygen concentrations within the chamber remain stable at all times.

See our related article and video demonstration, "The HypoxyLab smart easy-entry system"

Easy entry system
No transfer hatch required! Pass samples through the letterbox without upsetting the internal environment

Contamination control

HypoxyLab includes a built-in UV source within the water reservoir and a user replaceable HEPA filter that continuously scrubs the chamber atmosphere, ensuring that cultures and media are protected from contamination.

HEPA filter
Replaceable HEPA filter unit

Touchscreen display

Chamber oxygen, CO2, humidity and temperature are all set and controlled from the intuitively designed, integrated touchscreen, which simultaneously displays the current real-time levels of these parameters in both digital and trace formats.

Automated oxygen profiles

A fully customizable oxygen profile program is available from the touch screen, with which the HypoxyLab can be set to automatically subject cells to up to 8 sequentially defined oxygen concentrations, including an option to keep looping the program.

Lightweight cover / Ergonomic design

HypoxyLab’s lightweight and durable cover can be easily removed. This not only allows for easy loading of media and consumables but makes routine cleaning and disinfecting of the workstation a practical reality. Its ergonomic design ensures natural, relaxed operation, with an angled vision panel combined with adjustable LED illumination that provide excellent visibility.

Removable cover
The lightweight cover simply lifts off the base

Live cell imaging

We have teamed with CytoSMART™ to offer the Lux2 digital microscope system, an extremely compact digital microscope solution that can be deployed within the HypoxyLab and is built to withstand long-term exposure to tissue culture environments. The system is supplied with software for installation on a PC kept outside the HypoxyLab and on which live cell culture images are displayed. The CytoSMART™ Lux2 supports time-lapse recording and cloud-based data access.

CytoSMART™ Lux2
CytoSMART™ Lux2 digital microscope

Waste port

The HypoxyLab features a 6 mm stainless steel pass-thru waste port as standard, allowing for the aspiration of media, supernatants etc. within the chamber via an external vacuum pump.

6 mm waste port
6 mm waste port

Data logging

The 4 key environmental parameters are continuously recorded onto internal flash memory and can be exported to a USB flash drive via a port at the rear of the HypoxyLab at any time. Data files can be analyzed and played back using the free LabChart® Reader by ADInstruments.

Cost of ownership advantage

HypoxyLab’s compact and considered design ensures rapid equilibration to set points combined with frugal gas consumption. Service-free sensors and a user changeable HEPA filter simplify routine maintenance and minimize the long-term cost of owning a HypoxyLab.

Rationale for 'Hypoxic' Cell Culture

Cells react in different ways both metabolically and morphologically depending on the environmental factors maintaining and interacting with them.

In tissue culture, faithfully reproducing the in vivo cell environment is vital for accurate analysis of both cell metabolism and cell function.

It is commonly accepted that cells in vivo experience oxygen concentrations in the range of 5 – 80 mmHg (approx. 0.5 – 10% oxygen), depending on the tissue type. Yet the vast majority of cell biology research is still performed in incubators in which cells are exposed to atmospheric oxygen levels (circa 21%), a 'hyperoxic' state for most cell types. In other words, the oxygen concentration typically encountered by cells in traditional incubators is at least twice that experienced in normal tissues.

Culturing cells in such oxygen-rich environments can have profound implications on cell metabolism and signalling pathways. Famously the hypoxia-inducible factor (HIF) pathways clearly illustrate the importance of environment oxygen in cellular metabolism.

By delivering a contamination-free environment that offers precise and continuous control of oxygen, as well as of CO2, temperature and humidity, HypoxyLab delivers a powerful solution to research and industry looking to reproduce representative physiological conditions in cell-based research.

Meanwhile, it is the partial pressure of oxygen, not merely the % oxygen concentration that cells in culture actually ‘see’. HypoxyLab adopts this fundamental scientific principle and controls the chamber environment using the partial pressure of oxygen (pO2) expressed directly in SI units of mmHg or kPa. Since the partial pressure of oxygen varies not only with oxygen concentration but also with altitude and prevailing atmospheric pressure, this scientifically rigorous approach substantially enhances HypoxyLab’s performance accuracy relative to other hypoxia chambers and workstations that rely on % oxygen concentration control alone.

Articles

User Testimonials

“The HypoxyLab has been a great addition to our laboratory. It’s very easy to use, making it straightforward to achieve accurate and consistent levels of hypoxia, has a small footprint and uses less gas than most other workstations.”

Dr. Dan Peet

Dr Dan Peet, Associate Professor at the School of Biological Sciences, The University of Adelaide, Australia

“Working with the HypoxyLab is great. It is reliable, easy to use and requires quite little gas (as compared to larger chambers). Especially the possibility of using pre-defined oxygenation profiles is an important additional benefit. During these profiles the composition of the gas is changed rapidly and the actual gas fractions are well documented continuously. This feature allows interesting hypoxia/re-oxygenation experiments.”
Prof. Oliver Thews, Faculty of Medicine, Martin-Luther-University, Halle-Wittenberg, Germany

“The experience with the HypoxyLab has been great. It’s footprint is very small, a distinct advantage. The quality of technical support/service available is unmatched. Issues have been addressed by Oxford Optronix very swiftly and accurately along with a very personalized service.”
Dr. Anurag Kulkarni, Department of Medicine, Imperial College, London, UK

Specifications

Gas control Microprocessor controlled, 3 channel Digital Electronic Flow Controller (DEFC)
Gases Air, Nitrogen, CO2 (1-4 bar inlet pressure)
Contamination control  Integrated HEPA filtration 
Chamber working volume approx. 130L
Chamber working area approx. 500 mm (W) x 390 mm (D) 
Chamber storage capacity up to 40 multi-well plates or 10 cm Petri dishes (assumes 2 shelf units; excludes storage on working area)
Maximum gas flow rate 15L/minute/gas
Enclosure (removable) Polyethylene terephthalate G (PET-G)
Transfer hatch ‘Easy-Entry’ letterbox with internal flap (usable dimensions 204 mm (W) x 88 mm (H))
OxyLite thru-gland 1 x integrated thru-gland for OxyLite oxygen sensor
Waste port 1 x integrated stainless steel 6 mm waste port pass-thru (for vacuum line)
Colour touchscreen Integrated
External USB ports 1 x Type A (data recording and firmware upgrades) ; 1 x Type mini-B (pass-thru for internal USB port)
Internal, powered USB port Integrated
Power Auto-switching 110 – 240V AC 50/60 Hz, 500W max
External dimensions 800 mm (H) x 590 mm (W) x 690 mm (D)
Weight 25 Kg / 55 lbs
Operating temperature range 15 – 30 °C
Oxygen control method Feedback algorithm with auto PID – using DEFC and optical O2 sensor
Oxygen control range 1 – 140 mmHg; user programmable via touchscreen
Oxygen calibration Manual, recommended 6-monthly
Oxygen accuracy ± 0.5 mmHg (1-20 mmHg) ; ± 1 mmHg (21-40 mmHg) ; ± 2 mmHg (41-80 mmHg) ; ± 3 mmHg (81-140 mmHg)
Oxygen resolution 1 mmHg
CO2 control method Feedback algorithm with auto PID – using DEFC and IR CO2 sensor
CO2 control range 0 – 10.0%; user programmable via touchscreen
CO2 calibration Manual, recommended monthly
CO2 accuracy ± 0.25%
CO2 resolution 0.10%
Temp control method Feedback auto PID – using Class A Pt sensor
Temp control range Ambient +5°C (min 20°C) – 42 °C; user programmable via touchscreen
Temp calibration Pre-calibrated, none required
Temp accuracy  ± 0.5 °C
Temp resolution 0.1 °C
Temp gradient across chamber ± 0.5 °C
Humidity control method Nebuliser with auto PID using pre-calibrated capacitive sensor
Humidity calibration Pre-calibrated, none required
Humidity control range Ambient – 85% RH; user programmable via touchscreen
Humidity accuracy ± 2.5% RH
Humidity resolution 1% RH

*Specifications subject to change without notice

Frequently Asked Questions

What is HypoxyLab™?
HypoxyLab is a cell culture incubator and hands-on workstation that accurately mimics and maintains true physiological oxygen conditions, as well as maintaining temperature, humidity and CO2 conditions like any standard cell culture incubator.

How does HypoxyLab™ differ from other hypoxia workstations?
The HypoxyLab is highly compact, can fit on an ordinary lab bench, does not require the use of a transfer hatch, features built-in HEPA filtration, active humidification and regulates its oxygen environment using the absolute partial pressure of oxygen for maximum precision.

Why mmHg instead of % oxygen?
Using the partial pressure of oxygen to control the oxygen environment within HypoxyLab is simply the more scientifically rigorous thing to do! Since atmospheric (barometric) pressure changes with weather patterns (as well as with altitude), so does the oxygen concentration if it is merely maintained as a percentage thereof. Instead, HypoxyLab uses the partial pressure of oxygen to compensate for barometric pressure fluctuations (or differences in laboratory altitude), ensuring that cells in culture 'experience' a consistent oxygen concentration.

How do I get items in and out of the system?
Cell culture plates, medium, pipettors and other objects can be moved in an out of the HypoxyLab via the simple to operate easy-entry hatch at the front, or can be placed into the chamber prior to the start of the experiment by simply lifting off the whole enclosure cover.

Does external air enter the HypoxyLab™ when I open the easy-entry hatch?
The HypoxyLab strictly minimizes the ingress of external air by detecting the opening of the hatch and transiently generating a slight over-pressure. Some external air will enter the chamber but the system is so quick to correct for any atmospheric oxygen ingress that there can be no adverse effect on cell cultures being maintained.

Do I have to wear gloves to operate HypoxyLab?
There is no requirement per se for the operator to wear gloves, however, as with all cell culture work, wearing gloves represents good laboratory practice.

How can I clean the HypoxyLab™?
The HypoxyLab can be easily cleaned/disinfected using 70% ethanol or hydrogen peroxide based surface cleaners by removing the enclosure cover to expose all internal parts. The same applies to the enclosure cover, which can be easily and quickly removed.

What gases are required to operate HypoxyLab™?
3 gases are required, namely: synthetic air (20% oxygen balanced in nitrogen), 100% CO2 and 100% nitrogen. All gases should be of typical laboratory grade purity (we suggest 99.995% ('N4.5') or better) and be supplied at between 1 - 4 bar (15 - 60 PSI) pressure for synthetic air and CO2, and at between 3 - 5 bar (45 - 75 PSI) pressure for nitrogen.

Is the user protected from substances inside the HypoxyLab™?
No. While the HypoxyLab features a built-in HEPA filter that continuously ‘scrubs’ the internal atmosphere, the system does vent externally. The HypoxyLab is NOT therefore a substitute for a fume cupboard or a biological safety cabinet.

How clean is the internal environment?
The built-in HEPA filtration system achieves an atmosphere equivalent to, or better than, ISO 14644-1 Class 2 within 60 seconds of power-up, ensuring that cultures and media are protected from the risk of contamination.

Can I measure dissolved oxygen levels directly from within my cell cultures?
Yes. The HypoxyLab features a dedicated side-gland that supports our fibre-optic dissolved oxygen sensors, which are capable of reading absolute dissolved oxygen in units of mmHg directly from media or cell culture dishes. This requires any one of our OxyLite™ oxygen monitors.

Does the user need to be standing to operate the HypoxyLab™?
The system can be operated standing up or from a seated position. A height-adjustable stool is recommended for seated operation.

What is the typical nitrogen consumption rate of the HypoxyLab™?
Nitrogen is used both to generate and maintain an internal hypoxic environment and to generate the temporary over-pressure when the easy-entry hatch is operated. Of the 3 required gases nitrogen is therefore consumed the quickest. While usage rates will be extremely dependent on the conditions being maintained and the usage ‘profile’, we estimate that a large (50L water volume) bottle of compressed nitrogen will last 1-2 weeks with typical daily use of the system.

Do I have access to the trace data displayed on the touch-screen?
Yes. Data are automatically and continuously stored to internal memory and can be copied to an external USB media at any time. The internal memory is sufficient for approx. 2 weeks of continuous recordings, at which point old data files are progressively overwritten. Data are written in a format that can be read by LabChart Reader software, available for free from ADInstruments.

Journal Citations

HypoxyLab™ is being cited in a rapidly growing number of peer-reviewed articles.

Articles of note

A combined experimental and computational framework to evaluate the behavior of therapeutic cells for peripheral nerve regeneration (2022). Eleftheriadou D, Berg M, Phillips JB and Shipley RJ. Biotechnol. Bioeng.

Impact of the acidic environment on gene expression and functional parameters of tumors in vitro and in vivo (2021). Rauschner M, Lange L, Hüsing T, Reime S, Nolze A, Maschek M, Thews O & Riemann A. J Exp Clin Cancer Res, 40:10

Cochard J, Bull-Maurer A, Tauber C, Burlaud-Gaillard J, Mazurier F, Meunier JC, Roingeard P, Chouteau P. Differentiated Cells in Prolonged Hypoxia Produce Highly Infectious Native-Like Hepatitis C Virus Particles. Hepatology (2021). Epub Jun 15. PMID: 33665810

Accessories

SK CYTOSMART PRODUCTW 21

CYTOSMART

CytoSMART™ Lux2 digital microscope for live cell imaging, incl. Connect Lifespan…

CYTOSMART
Oxford Optronix cover

HL168

Purpose designed, stretchy thermal jacket for HypoxyLab

HL168
Hl107 eu

Gas regulator

0-6 Bar, 2-stage regulator

Gas regulator